Master Builders Solutions from BASF

Building on partnership. The Master Builders Solutions experts find innovative and sustainable solutions to meet your specific construction needs. BASF’s global experience and network help you to be successful – today and tomorrow.

Master Builders Solutions

The Master Builders Solutions brand brings all of BASF’s expertise together to create chemical solutions for new construction, maintenance, repair and renovation of structures. Master Builders Solutions is built on the experience gained from more than a century in the construction industry.

The know-how and experience of a global community of BASF construction experts form the core of Master Builders Solutions. We combine the right elements from our portfolio to solve your specific construction challenges. We collaborate across areas of expertise and regions and draw on the experience gained from countless construction projects worldwide. We leverage global BASF technologies, as well as our in-depth knowledge of local building needs, to develop innovations that help make you more successful and drive sustainable construction.

The comprehensive portfolio under the Master Builders Solutions brand encompasses concrete admixtures, cement additives, chemical solutions for underground construction, waterproofing solutions, sealants, concrete repair & protection solutions, performance grouts, performance flooring solutions.
BASF’s MasterFlow is a new generation of ultra high strength, high modulus, fatigue resistant cement based Exagrout for grouting offshore wind turbine installations.

The material has been especially formulated for large scale, pump applications:
- Grouting of wind turbine installations where excellent fatigue resistance is required, e.g. in grouted connections in monopile, tripod or jacket type foundations.
- Grouting under very harsh conditions, e.g. offshore applications or below water grouting, at temperatures as low as 0°C.
- All void filling from 25 mm to 600 mm where high strength and fatigue resistance is important, e.g. with gravity based foundations.

MasterFlow 9500 exhibits long term durability and guarantees a fast, secure and cost effective installation of the offshore wind farm. Winds turbines are special – their safe and durable installation largely depends on the correct design and interaction of all components. Our MasterFlow Exagrout’s high performance guarantees a long-term and maintenance free operation of the wind farm. BASF helps the wind industry to be more successful by better understanding the needs of our partners and reducing the risks involved in the construction and exploration of modern wind farms. Managing risks means for BASF Construction Chemicals amongst others:

- MasterFlow 9500 Exagrout installed by BASF Licensed Contractors
- Independent documentation of the material properties
- Detailed installation methods as part of the Quality Assurance
- Validation and “Fit for Purpose” verification by DNV
- Extended warranties for correctly installed and operated wind farms
- Compulsory training of BASF Licensed Contractors

MasterFlow 9500 Exagrout for onshore wind turbine installations:

Excellent durability:
- High fatigue resistance, absorbing dynamic loads
- Zero autogenous shrinkage; volume stable
- High flexural strength, even without the addition of fibres
- Freeze/thaw resistant
- Very low porosity and water absorption

Secure installation:
- Ultra-high axial load capacity
- Excellent long term load transfer
- Validated by Det Norske Veritas (DNV)
- High ultimate strengths
- Installation by BASF Licensed Contractors

Fast and cost effective installation:
- Rapid strength build-up, even at cold temperatures
- Short overall installation times and earlier operation of the wind farm
- Faster energy production, earlier return on investment safeguard project completion on time

Product validation
BASF has developed a specific grout, MasterFlow 9500, for application in offshore wind turbine installations. Typically the product is used in the grouted connections of wind turbine foundations, e.g. between transition piece and monopile, in steel jackets and similar.

BASF has therefore instructed Det Norske Veritas (DNV) to verify MasterFlow 9500 for use in offshore wind turbine installations. Throughout the validation process, DNV has conducted the following activities:

1. Validation and acceptance of testing methodology, procedures and extent
2. Evaluation and acceptance of Aalborg University DCE Laboratory as an external, independent test laboratory
3. Evaluation, witnessing and acceptance of mock-up application and large scale field pumping trials
4. Audit, evaluation and acceptance of grout manufacturing equipment and facilities
5. Audit of BASF laboratory and factory production/quality control
6. Evaluation and acceptance of the independent laboratory test results and large scale grout pumping trials
7. Evaluation of grout suitability in offshore applications such as grouted connections in offshore wind turbine foundations
8. Acceptance of TUM (Technische Universität München) as qualified test laboratory
9. Evaluation and acceptance of laboratory tests carried out at TUM for grout at +2°C and +5°C
10. Evaluation and acceptance of laboratory tests carried out at Applus for grout at -1°C, +20°C and +30°C.

A Statement of Compliance is issued by DNV based on the above verification programme. The Statement of Compliance is a written assurance that MasterFlow 9500 conforms to specific strength, durability and functional requirements.

DNV – Conclusions and recommendations
- The verification programme for MasterFlow 9500 has been successfully completed by DNV according to the defined scope of work
- Fatigue life has been tested and results compared with predictions for fatigue life in accordance with DNV-OS-C502 for equivalent stress conditions
- MasterFlow 9500 shows as good a performance under cyclic loading as reinforced concrete
- The ultra high modulus of elasticity may also give benefits with a stiffening effect
- The results of the mock-up test confirm the functional properties of MasterFlow 9500 and indicate that the grout is suitable for the intended applications
- MasterFlow 9500 exhibits very good pumpability and flowability over a long period of time. The grout is capable to be pumped through a 2 in. hose over 200 m length and 20 m elevation

Neues Zertifikat kommt im November.

Statement of compliance

MasterFlow 9500
12NE7QE-7_DVR
MasterFlow 9500
Mechanical Properties

Compressive strength
The compressive strength of BASF’s MasterFlow 9500 was tested in accordance with EN 12390-3, using 75 mm cubes. At each testing age 3 cubes were tested. The compressive strengths are plotted as a function of age, in Figure 1.

Figure 1

Strength development at cold and warm temperatures were determined in accordance of EN 12390-3. The results for MasterFlow 9500 tested at -1°C, +20°C and +30°C are shown in Figure 2.

Figure 2

Flexural strength – Tensile splitting
The flexural strength was measured in accordance with EN 196-1 on 40 x 40 x 160 mm prisms, while the splitting tensile strength was determined in accordance with EN 12390-5 on cylinders ø 100 x 200 mm. Results are shown in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Flexural Strength (MPa)</th>
<th>Tensile splitting strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 days</td>
<td>18.4</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Time</th>
<th>Modulus of elasticity (GPa)</th>
<th>Poisson’s ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 days</td>
<td>50.9</td>
<td>0.199</td>
</tr>
</tbody>
</table>

Static and dynamic modulus of elasticity
The static modulus of elasticity was measured on cylinders ø 100 x 200 mm cured 28 days in water in accordance with EN 13412. Results are shown in Table 3. Dynamic modulus of elasticity at cold temperatures was measured on prisms cured in water according to the guideline for the “protection and repair of concrete structures” of the German Committee of Reinforced Concrete (Rili-SIB DAfStb). The results are plotted in Figure 3.

Figure 3

Autogenous shrinkage
What is autogenous shrinkage?
Autogenous shrinkage is the result of the chemical reaction between water and a cementitious material. The volume of the components before the reaction is typically larger than the volume of the end products i.e. hydrated cement (see Figure 4.). Autogenous shrinkage can occur in wet conditions, in contradiction to drying shrinkage which occurs only in dry conditions.

Autogenous shrinkage can result in de-bonding of the grout from the steel in grouted connections and consequently poor load transfer of the dynamic loads that act on the foundations in offshore wind turbine installations.

Volume stability is of utmost importance in the long term durability of foundations in offshore wind turbine installations. Verification of the autogenous shrinkage is therefore vital in the validation of the grouting material used in offshore grouted connections.

Laboratory testing:
Autogenous shrinkage was measured using a method developed at Aalborg University. After mixing MasterFlow 9500, corrugated plastic tubes, approximately 410 mm long and 30 mm in diameter, were filled with the grout and then sealed by a plastic stopper in each end of the tube and placed in a temperature controlled room at 20°C. After final set, the length of each specimen was measured as a function of time, using a micrometer gauge, cf. Figure 5.

Autogenous shrinkage results found in the technical literature most often refer to measurements starting at an age of one day when the specimens are de-moulded. Figure 6 shows the autogenous shrinkage measured over time starting at the age of one day. Zero autogenous shrinkage is measured after approximately one year.

Figure 5

Figure 6

Figure 7
MasterFlow 9500 Mechanical Properties

Axial load capacity of grouted connections

The main purpose of this test is to determine the maximum compressive axial force required to produce a slip on the interface between the steel surface and the grout. This force will be defined as the failure load or the ultimate resistance capacity of the connection against static compressive axial loading.

A set of two concentric steel tubes is used for making test specimens. The annulus between the inner and outer tubular has been filled with MasterFlow 9500. (Figure 7) A compressive load of 50 kN has been applied to the grouted connection and increased in steps of 60 kN. The grouted connection has been exposed to pre-defined loads and relaxation before the compressive axial load has been increased until a first slip occurred. At this point the grouted connection did not manage to sustain the connection and increased in steps of 60 kN. (see Figure 11). It can be concluded that MasterFlow 9500 shows a performance under cyclic loading that is as good as for reinforced concrete. Based on the tests, it is concluded that the design for fatigue can be carried out using formulations for fatigue life prediction in DNV-OS-C502 for reinforced concrete.

Fatigue

Fatigue resistance is the resistance to the progressive and localised structural damage that occurs when a material is subjected to cyclic loading. The nominal maximum stress values are less than the ultimate stress limit and may be below the yield stress limit of the material.

Fatigue occurs when a material is subjected to repeated loading and unloading. If the loads are above a certain threshold, microscopic cracks will begin to form. Eventually a crack will reach a critical size, and the structure will suddenly fracture.

The offshore design standard DNV-OS-C502 gives design guidelines for how to take into account maximum and minimum stress levels for fatigue life predictions (see Figure 9).

Fatigue calculations are made according to the formulation

\[
\log N = C_1 - \frac{\sigma_{\text{max}}}{C_2} - \frac{\sigma_{\text{min}}}{C_5}
\]

where:

- \(C_1 \) = 12 for structures in air
- \(C_1 \) = 10 for structures in water, and stress blocks having variation in the compression-compression range
- \(C_5 \) = 8 for structures in water, and stress blocks having variation in the compression-tension range
- \(C_2 \) = the numerically largest compressive stress, calculated as average within each stress-block
- \(C_3 \) = the numerically lowest compressive stress, calculated as average within each stress-block (for tension = 0)
- \(C_6 \) = strength reduction factor for the specific grout, \(C_6 = 0.85 \) shall be taken for MasterFlow 9500

Fatigue resistance capacity of the connection against progressive and localised structural damage

Fatigue resistance is the resistance to the progressive and localised structural damage that occurs when a material is subjected to cyclic loading. The nominal maximum stress values are less than the ultimate stress limit and may be below the yield stress limit of the material.

** Crack initiation and propagation**

- When the applied stress exceeds the material’s yield strength, microscopic cracks begin to form.
- Eventually, cracks grow in size and can coalesce into longer cracks.
- If the crack growth is not arrested, it can lead to the initiation of a macroscopic crack.

Fatigue failure

- Fatigue failure occurs when a crack reaches a critical size and causes the structure to suddenly fracture.
- Fatigue failure is a result of repeated cyclic loading.

Fatigue life predictions

Fatigue life predictions are made using formulations for fatigue life prediction in DNV-OS-C502 (Figure 10). It can be concluded that MasterFlow 9500 shows a performance under cyclic loading that is as good as for reinforced concrete. Based on the tests, it is concluded that the design for fatigue can be carried out using formulations for fatigue life prediction in DNV-OS-C502 for reinforced concrete.

Figure 7

A set of two concentric steel tubes is used for making test specimens. The annulus between the inner and outer tubular has been filled with MasterFlow 9500. A compressive load of 50 kN has been applied to the grouted connection and increased in steps of 60 kN. The grouted connection has been exposed to pre-defined loads and relaxation before the compressive axial load has been increased until a first slip occurred. At this point the grouted connection did not manage to sustain the connection and increased in steps of 60 kN.

Figure 8

Fatigue according DNV-OS-C502

Figure 9

Fatigue calculations are made according to the formulation

\[
\log N = C_1 - \frac{\sigma_{\text{max}}}{C_2} - \frac{\sigma_{\text{min}}}{C_5}
\]

where:

- \(C_1 \) = 12 for structures in air
- \(C_1 \) = 10 for structures in water, and stress blocks having variation in the compression-compression range
- \(C_5 \) = 8 for structures in water, and stress blocks having variation in the compression-tension range
- \(C_2 \) = the numerically largest compressive stress, calculated as average within each stress-block
- \(C_3 \) = the numerically lowest compressive stress, calculated as average within each stress-block (for tension = 0)
- \(C_6 \) = strength reduction factor for the specific grout, \(C_6 = 0.85 \) shall be taken for MasterFlow 9500

Figure 10

Comparison: Fatigue test results in water - DNV-OS-C502

Figure 11

Grafiken werden parallel nachgebaut (Design, Farbe, Linien)
Our reference in Baltic Sea – off the coast of South Sealand, Denmark:
Gravity Based Foundation Systems: MasterFlex 9500
used to connect the tower to the foundation
The data contained in this publication are based on our current knowledge and experience. They do not constitute the agreed contractual quality of the product and, in view of the many factors that may affect processing and application of our products, do not relieve processors from carrying out their own investigations and tests. The agreed contractual quality of the product at the time of transfer of risk is based solely on the data in the specification data sheet. Any descriptions, drawings, photographs, data, proportions, weights, etc. given in this publication may change without prior information. It is the responsibility of the recipient of our product to ensure that any proprietary rights and existing laws and legislation are observed (08/2013).

Master Builders Solutions from BASF for the Construction Industry

MasterAir
Complete solutions for air entrained concrete

MasterBrace
Solutions for concrete strengthening

MasterCast
Solutions for the manufactured concrete product industry

MasterCem
Solutions for cement manufacture

MasterEmaco
Solutions for concrete repair

MasterFinish
Solutions for formwork treatment

MasterFlow
Solutions for precision grouting

MasterFiber
Comprehensive solutions for fiber reinforced concrete

MasterGlenium
Solution for hyperplasticized concrete

MasterInject
Solutions for concrete injection

MasterKure
Solutions for concrete curing

MasterLife
Solutions for enhanced durability

MasterMatrix
Advanced rheology control solutions for self-consolidating concrete

MasterPel
Solutions for water tight concrete

MasterPolyheed
Solutions for high performance concrete

MasterPozzolith
Solutions for water-reduced concrete

MasterProtect
Solutions for concrete protection

MasterRheobuild
Solutions for superplasticized concrete

MasterSeal
Solutions for waterproofing and sealing

MasterRoc
Solutions for enhanced durability

MasterSet
Solutions for retardation control

MasterSure
Solutions for workability control

MasterTop
Solutions for industrial and commercial floors

Master X-Seed
Advanced accelerator solutions for pre-cast concrete

Ucrete
Flooring solutions for harsh environments

BASF Construction Chemicals GmbH
European Marketing
c/o PCI Augsburg GmbH
Piccardstrasse 11, 86159 Augsburg Germany
www.emaconanocrete.com

The data contained in this publication are based on our current knowledge and experience. They do not constitute the agreed contractual quality of the product and, in view of the many factors that may affect processing and application of our products, do not relieve processors from carrying out their own investigations and tests. The agreed contractual quality of the product at the time of transfer of risk is based solely on the data in the specification data sheet. Any descriptions, drawings, photographs, data, proportions, weights, etc. given in this publication may change without prior information. It is the responsibility of the recipient of our product to ensure that any proprietary rights and existing laws and legislation are observed (08/2013).