Index of Procedures

RES 100E Procedure for Cleaning EIFS
RES 101E Procedure for Removing Efflorescence
RES 200E Procedure for Recoating EIFS
RES 201E Procedure for Reapplying Textured Finish
RES 300E Procedure for Repairing Cracks in EIFS
RES 301E Procedure for Repairing Cracks at Aesthetic Joints in EIFS
RES 302E Procedure for Repairing Puncture Damage in EIFS
RES 303E Procedure for Reattachment of EIFS
RES 400E Procedure for Replacement of Sealant Joints in EIFS
RES 401E Procedure for Installation of an Overlay Sealant Joint
RES 500E Procedure for Resurfacing EIFS
RES 600ES Procedure for Recladding Existing Structures
Introduction
EIFS may require periodic cleaning to refresh its appearance. Clean surfaces are needed prior to recoating EIFS. This procedure describes methods that can be used to clean EIFS that uses a textured acrylic finish.

Equipment
- Appropriate personal protective equipment
- Soft or medium bristle brushes
- Hose
- Pressure washer

Materials
- Cleaning solution
- Water supply

Procedure
1. Evaluate the surface to be cleaned and the nature of material that needs to be removed. Select an appropriate cleaning solution.
2. Test the cleaning solution on a small inconspicuous area to ensure that it provides the desired results.
3. Spray or brush the cleaning solution to the wall. If spraying, use low pressure spray to avoid driving dirt into textured surfaces. Allow the solution to soak the wall for approximately 15 minutes. Scrub the wall with a soft bristle brush to loosen heavy deposits.
4. Rinse thoroughly with clean water and allow to dry.

Do
- Follow cleaner manufacturer recommendations for dilution of concentrated cleaning solutions.
- Use a bleach solution to remove mold. Bleach is needed to kill micro-organisms that form mold and mildew.
- Evaluate alternate cleaners to remove stains that do not respond to detergents. Consult the cleaning solution manufacturer.
- Check local regulatory requirements for disposal of waste water and cleaning solutions.

Do Not
- Never use water pressure in excess of 500 psi or allow pressure nozzles to come within 2 feet of the wall. Excessive pressure may damage textured finishes and EIFS lamina.
- Cleaning solutions should not be allowed to dry on the wall. They may form deposits that can be difficult to remove.
- Abrasion can damage finishes and sealants. Do not scrub excessively or use wire brushes.
- Trisodium phosphate detergent is a food source for mold. Do not use trisodium phosphate detergent without bleach in hot humid climates - unless mold is killed with bleach it will return.
- Do not allow detergents of any kind to come in contact with hydrophobic coatings and finishes such as TERSUS by BASF Corporation - Wall Systems. Detergents can deactivate the anti-soiling properties of hydrophobic coatings and finishes.
- Steam or hot water should not be used to clean EIFS.
- Do not apply solvents or solvent-based cleaners to EIFS.

Cleaning Solution Suppliers
EaCoChem – www.eacochem.com
ShoreBest – www.shorebest.com
Wind-Lock Corporation – www.wind-lock.com

Technical Information
Consult the BASF Technical Services department for specific recommendations concerning all other applications. Consult the Senergy website, www.senergy.basf.com, for additional information about products and systems and for updated literature.
Introduction
Efflorescence is caused by the migration of soluble salts present in Portland cement. It occurs when water dissolves unhydrated calcium hydroxide, migrates to the surface, and leaves a deposit when the water evaporates.

Efflorescence can usually be removed by a light wash with an acidic cleaner that has been formulated for this purpose.

Equipment
- Appropriate personal protective equipment
- Soft or medium bristle brushes
- Hose – water hose
- Pressure washer

Materials
- Cleaning solution
- Water supply

Procedure:
1. Evaluate the surface to be cleaned and the nature of material that needs to be removed. Select an appropriate cleaning solution.
2. Test the cleaning solution on a small inconspicuous area to ensure that it provides the desired results.
3. Spray or brush the cleaning solution to the wall. If spraying, use low pressure spray to avoid driving dirt into textured surfaces. Allow the solution to soak the wall for approximately 15 minutes. Scrub the wall with a soft bristle brush to loosen heavy deposits.
4. Rinse thoroughly with clean water and allow to dry.

Do
- Follow cleaner manufacturer recommendations for dilution of concentrated cleaning solutions.
- Check local regulatory requirements for disposal of waste water and cleaning solutions.

Do Not
- Never use water pressure in excess of 500 psi or allow pressure nozzles to come within 2 feet of the wall. Excessive pressure may damage textured finishes and EIFS lamina.
- Cleaning solutions should not be allowed to dry on the wall. They may form deposits that can be difficult to remove.
- Abrasion can damage finishes and sealants. Do not scrub excessively or use wire brushes.
- Steam or hot water should not be used to clean EIFS.
- Do not apply solvents or solvent-based cleaners to EIFS.

Cleaning Solution Suppliers
EaCoChem – www.eacochem.com
ShoreBest – www.shorebest.com
Wind-Lock Corporation – www.wind-lock.com

Technical Information
Consult the BASF Technical Services department for specific recommendations concerning all other applications. Consult the Senergy website, www.senergy.basf.com, for additional information about products and systems and for updated literature.
The appearance of EIFS walls can be quickly refreshed by applying an appropriate coating. BASF COLOR COAT is specifically formulated for EIFS. This 100% acrylic coating minimizes changes to existing finishes. Alternately, BASF TERSUS COLOR COAT can be used to impart a hydrophobic surface that repels dirt and helps buildings remain cleaner and more visually appealing.

If hairline cracks less than approximately 1/32” are present, two coats of BASF SENERLASTIC COATING can be used to provide a high-build crack bridging coating.

Equipment
- Appropriate personal protective equipment
- Rollers, roller screens, pans, pails
- Paint brushes
- Spray equipment

Materials:
- BASF COLOR COAT, BASF SENERLASTIC COATING or BASF TERSUS COLOR COAT
- Masking tape and materials for overspray protection

Procedure
1. Thoroughly clean all surfaces that will be coated, and allow to dry.
2. Inspect sealant joints and repair as needed.
3. Protect areas that may be subject to overspray.
4. Apply BASF COLOR COAT, BASF SENERLASTIC COATING or BASF TERSUS COLOR COAT according to Senergy instructions (see relevant Senergy Product Bulletins).

Technical Information
Consult the BASF Technical Services department for specific recommendations concerning all other applications. Consult the Senergy website, www.senergy.basf.com, for additional information about products and systems and for updated literature.
Introduction
There are many reasons why it may be necessary to reapply a textured finish. Substrate conditions, scaffold lines, and application variables may cause texture inconsistencies that require finish reapplication. For most textured finishes, it will be necessary to reskim the finish with base coat to create a smooth surface onto which new finish can be applied.

Equipment
• Appropriate personal protective equipment
• Scraper, wire brush
• Stainless steel trowel and margin trowel
• Plastic float
• Drill and paddle mixer

Materials
• BASF SENERFLEX textured finish, color matched as required
• Senergy ALPHA or ALPHA DRY Base Coat
• Masking tape

Procedure
1. Identify areas that will be repaired. For aesthetic reasons, repairs should be terminated at an architectural break in the wall such as a reveal, change in plane or change in elevation. Doing this minimizes the contrast between repaired areas and adjacent finishes.
2. Thoroughly clean all surfaces that will be repaired, and allow to dry.
3. Inspect all sealant joints and repair as needed.
4. Protect areas that will not be repaired.
5. Determine whether application of base coat will be needed. Certain smooth and specialty finishes may be applied directly over existing finish without reskimming. If reskimming is not needed, go to step #8.
6. Apply a thin layer of Senergy ALPHA or ALPHA DRY Base Coat, creating a smooth, flat surface for reapplication of textured finish. Allow to dry.
7. Repair any surface imperfections in the base coat that may show through the textured finish.
8. Apply BASF SENERFLEX textured finish using a stainless steel trowel to a thickness slightly greater than the largest aggregate in the finish. Scrape finish to a uniform thickness, then float the finish and allow to dry.

Technical Information
Consult the BASF Technical Services department for specific recommendations concerning all other applications. Consult the Senergy website, www.senergy.basf.com, for additional information about products and systems and for updated literature.
Introduction
Properly installed EIFS should not crack. When cracking is found, a root
cause analysis is needed to determine the cause of cracking, otherwise
repairs may not be effective. In some cases, EIFS installation deficiencies
can be corrected. Where underlying substrate conditions or structural
movement cause cracks to form, a more extensive repair may be needed.

Cracking caused by gaps between insulation boards and insufficient mesh
overlap can be repaired using the procedure below.

Equipment
• Appropriate personal protective equipment
• Stainless steel trowel and margin trowel
• Plastic float
• Paint brush
• Scraper
• Coarse sandpaper and/or a hand-held grinder
• Scoring knife
• Drill and paddle mixer

Materials
• Water-based paint remover
• Plastic pails
• Masking tape
• Senergy ALPHA or ALPHA DRY Base Coat
• Senergy FLEXGUARD 4 Reinforcing Mesh
• Color and texture matched Senergy Finish
• EPS slivers

Procedure
1. Identify and mark the extent of cracking so that the entire cracked
area is repaired. For aesthetic reasons, resurfacing should be
terminated at an architectural break in the wall such as a reveal,
change in plane or change in elevation. Doing this minimizes the
contrast between resurfaced areas and adjacent finishes

2. If working in an area where dust control is needed, use of paint
remover is recommended. Apply paint remover to the marked area
and allow it to soften the finish. Use a scraper to remove the finish,
and coarse sandpaper to remove base coat down to the reinforcing
mesh. Alternately, a hand-held grinder can be used to remove both
finish and base coat. Do not grind into reinforcing mesh; remove finish
and base coat at least 3-inches in all directions surrounding the crack.

3. Assess the root cause of cracking.
 a. If cracking is caused by excessive gap between insulation boards,
 remove base coat and mesh surrounding the crack. Fill the
 crack with EPS slivers. Do not fill gaps between insulation board
 with base coat. Shave or rasp foam flush with the surrounding
 insulation. Embed Senergy FLEXGUARD 4 Reinforcing Mesh in
 ALPHA or ALPHA DRY Base Coat over the repaired insulation
 board and extending at least 2.5-inches onto existing base coat
 and creating a smooth transition from existing base coat to new
 base coat.

 b. If cracking is caused by excessive gap between insulation boards
 that has been filled with base coat, the base coat must be
 removed. Cut out surrounding EPS insulation and use the repair
 procedure for remediating puncture damage.

 c. If cracking is caused by mesh that has insufficient or no overlap,
 embed Senergy FLEXGUARD 4 Reinforcing Mesh and ALPHA
 or ALPHA DRY Base Coat over the affected area and extending
 at least 2.5-inches onto existing base coat. Create a smooth
 transition from existing base coat to new base coat.

4. Apply masking tape around the area that has been repaired. Apply
 color-matched and texture-matched Senergy Finish. Float the finish to
 match existing finish. Remove the masking tape and use a brush to
 blend the wet edge of the finish into existing finish, and allow to dry.

Technical Information
Consult the BASF Technical Services department for specific
recommendations concerning all other applications. Consult the Senergy
website, www.senergy.basf.com, for additional information about
products and systems and for updated literature.
Introduction
Aesthetic joints are used in EIFS to provide visual separation. They can be scored or routed into EIFS insulation board. Cracks may occur at aesthetic joints for a variety of reasons. This repair procedure can be used to seal a crack and protect against moisture intrusion.

Equipment
- Appropriate personal protective equipment
- Paint brush
- Detail tool
- Caulk gun
- Tooling knife

Materials
- Bond breaker tape
- BASF MASTERSEAL NP-100 or NP-150 sealant (select appropriate color)

Procedure
1. Clean the area around the crack and allow it to dry.
2. Apply bond breaker tape centered over the crack to prevent three-sided adhesion.
3. Install BASF MASTERSEAL NP100 or NP150 over the bond breaker tape. Tool the sealant in two directions, ensuring that it extends at least 1-inch on either side of the bond breaker tape. Allow sealant to dry.

Technical Information
Consult the BASF Technical Services department for specific recommendations concerning all other applications. Consult the Senergy website, www.senergy.basf.com, for additional information about products and systems and for updated literature.
Introduction
Impact exceeding the strength of the reinforcing mesh used in EIFS construction will rupture the EIFS surface. EIFS can be designed to have tremendous impact strength; before repairing punctured EIFS consideration should be given to the anticipated use conditions. If EIFS are expected to withstand routine impact, a high-impact surfacing system should be installed. In addition to creating a durable repair, installing an all-new surfacing system may provide an enhanced appearance.

Equipment
- Appropriate personal protective equipment
- Stainless steel trowel and margin trowel
- Plastic float
- Paint brush
- Scraper
- Coarse sandpaper and/or a hand-held grinder
- Scoring knife
- Drill and paddle mixer

Materials
- Gel paint remover
- Plastic pails
- Masking tape
- Senergy ALPHA or ALPHA DRY Base Coat
- Senergy FLEXGUARD 4 Reinforcing Mesh
- Optional BASF HI-IMPACT 20 Mesh
- Color and texture matched Senergy Finish
- EPS slivers

Procedure
1. If working in an area where dust control is needed, use of paint remover is recommended. Apply paint remover gel around the puncture and allow it to soften the finish. Use a scraper to remove the finish, and coarse sandpaper to remove base coat down to the reinforcing mesh. Alternately, a hand-held grinder can be used to remove both finish and base coat. Do not grind into reinforcing mesh; remove finish and base coat at least 5-inches in all directions surrounding the puncture.
2. Cut lamina cleanly around the damaged area, ensuring that at least 2.5-inches of intact base coat and mesh is present between the damaged area and surrounding EIFS lamina.
3. Remove EPS from the damaged area, creating a smooth substrate to which new EPS can be fastened. Cut new EPS to the shape of the EPS void, creating a tightly-fitting repair. Apply Senergy ALPHA or ALPHA DRY Base Coat to the new EPS and press it into place. Allow the adhesive to dry. Insert EPS slivers into any gap greater the 1/16-inch wide. Sand or rasp the surface flush with adjacent EPS.
4. Cut Senergy FLEXGUARD 4 Reinforcing Mesh such that it overlaps at least 1-inch onto existing base coat and mesh. Tape around the puncture, then embed Senergy FLEXGUARD 4 Reinforcing Mesh into ALPHA or ALPHA DRY Base Coat, ensuring that fresh base coat and mesh is level with the existing lamina. Use a double layer of FLEXGUARD 4 when repairing damaged corners.
5. Apply color-matched and texture-matched Senergy finish. See Figure 5. Float the finish to match existing finish. Remove the masking tape and use a brush to blend the wet edge of the finish into existing finish, and allow to dry.

Do
- Realize that repairs performed using this procedure may be visible after repairs are complete.
- Consider recoating or resurfacing affected areas if aesthetic repair is needed.
- Consider resurfacing all areas that are subject to impact using BASF HI-IMPACT 20 mesh and FLEXGUARD 4 Reinforcing Mesh. This will create a strong, durable and attractive repair.

Do Not
- Fill gaps between insulation board with base coat.

Technical Information
Consult the BASF Technical Services department for specific recommendations concerning all other applications. Consult the Senergy website, www.senergy.basf.com, for additional information about products and systems and for updated literature.
RES 303E
SMaRT™ EIFS Procedure
Procedure for Reattachment of EIFS

Introduction
EIFS claddings that become separated from the underlying substrate can be reattached using mechanical fasteners. Separation can occur if substrates are not properly prepared prior to EIFS application, or for other reasons during the service life of the building.

The fastening schedule that is used must be adequate to manage wind pressure and other building-specific requirements. Local and national building code requirements may need to be addressed. For these reasons, it may be necessary to employ an engineering consultant who is familiar with these requirements.

Equipment
- Appropriate personal protective equipment
- Scraper, wire brush
- Stainless steel trowel and margin trowel
- Plastic float
- Drill and paddle mixer

Materials
- Wind Devil 2 plates (Wind-lock Corporation)
- Fasteners of length suitable to EPS thickness and type suitable to the substrate
- BASF SENERFLEX textured finish, color matched as required
- Senergy ALPHA or ALPHA DRY Base Coat
- Senergy FLEXGUARD 4 Reinforcing Mesh

Procedure
1. This procedure should be used after a determination has been made that the EIFS and underlying materials are sound and in serviceable condition. If other conditions exist that require remediation, they should be addressed either before or instead of EIFS reattachment.
2. Locate places where fasteners will be installed. For gypsum, cement board and other non nail-base sheathing, fasteners must be installed into the underlying framing.
3. Fasten with Wind Devil 2 plates and fasteners of appropriate length and type. The minimum fastener pattern is 16-inches x 16-inches; additional fasteners may be needed depending on wind load requirements and the resulting flatness of the wall.
4. Install fasteners such that the washer surface is slightly below the plane of the finish surface, but not more than 1/16-inch beneath the surface.
5. Embed Senergy FLEXGUARD 4 Reinforcing Mesh in ALPHA or ALPHA DRY Base Coat over each fastener, extending the base coat/mesh at least 9-inches in all directions around the fastener. Allow Senergy ALPHA or ALPHA DRY Base Coat to dry for at least 24-hours.
6. Apply a thin layer of Senergy ALPHA or ALPHA DRY Base Coat, creating a smooth, flat surface for reapplication of textured finish. Extend the Senergy ALPHA or ALPHA DRY Base Coat to a natural break, such as a reveal corner or sealant joint. Allow to dry.
7. Repair any surface imperfections in the base coat that may show through the textured finish, such as trowel marks or dimpling at fastener heads.
8. Apply BASF SENERFLEX textured finish using a stainless steel trowel to a thickness slightly greater than the largest aggregate in the finish. Scrape finish to a uniform thickness, then float the finish and allow to dry.

Technical Information
Consult the BASF Technical Services department for specific recommendations concerning all other applications. Consult the Senergy website, www.senergy.basf.com, for additional information about products and systems and for updated literature.
RES 400E

SMaRT™ EIFS Procedure
Procedure for Replacement of Sealant Joints in EIFS

Introduction
At some point it is likely that sealants used to waterproof joints in EIFS claddings will need to be removed and replaced. While drainage EIFS designs offer secondary moisture protection, even in these systems it is important to maintain sealant integrity.

Equipment
- Appropriate personal protective equipment
- Stainless steel trowel and margin trowel
- Paint brush
- Scaper
- Scoring knife and/or oscillating blade sealant cutting knife
- Air compressor
- Caulk gun
- Tooling knife
- Drill and paddle mixer
- Coarse sandpaper

Materials
- Water-based paint remover
- Masking tape
- Senergy ALPHA or ALPHA DRY Base Coat
- Senergy FLEXGUARD 4 Reinforcing Mesh
- Closed cell backer rod
- BASF MASTERSEAL NP-100 or NP-150 sealant
- BASF MASTERSEAL P173 or P179 Primer

Procedure
1. Cut existing sealant away from EIFS joint using a scoring knife or a sealant cutting knife with an oscillating blade, such as the CLR Fein SuperCut Sealant Cutter Knife. Avoid slicing into the EIFS lamina. If the EIFS lamina is damaged, mark these areas for subsequent repair.
2. Remove existing sealant and backer rod from the joint. Remove sealant residue and any finish that may be present inside the joint using sandpaper, a hand-held grinder, or painter remover and a scraper.
3. Brush or blow away dust on joint surfaces.
4. Apply a skim coat of Senergy ALPHA or ALPHA DRY Base Coat to the prepared joint surfaces. If the EIFS lamina has been damaged, embed FLEXGUARD 4 Reinforcing Mesh in the base coat. Ensure that the surface of the base coat is smooth and reinforcing mesh is fully embedded and wrapped entirely into the joint to provide sufficient substrate for sealant application. Allow base coat to dry for a minimum of 24-hours.
5. Remove dust from the joint with a brush or compressed air. Mask off EIFS finish on the surface of the wall to avoid staining. Prime with BASF MASTERSEAL P173 or P179 Primer using either the cloth or brush method depending on the surface texture. Allow the primer to dry. Primed joints must receive sealant on the same day that primer is applied.
6. Install correctly sized closed-cell backer rod to the correct depth.
7. Apply MASTERSEAL NP100 or NP 150 sealant. Tool the sealant with a striking knife or spatula to smooth the surface, forcing the sealant against the backer rod and substrate. Use of liquid tooling agents are not recommended. Allow sealant to fully cure.

Technical Information
Consult the BASF Technical Services department for specific recommendations concerning all other applications. Consult the Senergy website, www.senergy.basf.com, for additional information about products and systems and for updated literature.
RES 401E

SMaRT™ EIFS Procedure
Procedure for Installation of an Overlay Sealant Joint

Introduction
In instances where it is not possible to remove and replace existing sealant joints that need repair, a bridge joint can be applied on top of the existing joint.

Equipment
- Appropriate personal protective equipment
- Sealant cutting tool
- Coarse sandpaper and/or a hand-held grinder
- Air compressor
- Caulk gun
- Tooling knife or spatula

Materials
- Masking tape
- Bond breaker tape
- BASF MASTERSEAL NP-100 or NP-150 sealant
- BASF MASTERSEAL P173 or 179 Primer

Procedure
1. Cut the existing sealant down the middle of the joint through to the backer rod.
2. Remove at least 3/8” of textured finish on either side of the joint, exposing the base coat. Do not grind into reinforcing mesh.
3. Clean dust and debris from the surface that will receive sealant using a brush or oil-free compressed air.
4. Mask off textured finish outside of the area that will receive sealant. Build up the area adjacent to the places that will receive sealant to at least 1/4” thickness to allow the thickness of subsequently applied sealant to be gauged.
5. Apply bond breaker tape over the existing sealant joint.
6. Prime affected area with BASF MASTERSEAL P173 or P179 Primer. Allow the primer to dry. Primed joints must receive sealant on the same day that primer is applied.
7. Apply BASF MASTERSEAL NP100 or NP 150 sealant, extending sealant at least 3/8” onto basecoat on either side of the existing joint. Tool the sealant with a striking knife or spatula to smooth the surface. Sealant must be greater than 1/4” and no more than 3/8” thick. Use of liquid tooling agents are not recommended. Allow sealant to become tacky prior to removal of masking tape and materials used to gauge sealant thickness. Allow sealant to fully cure.

Technical Information
Consult the BASF Technical Services department for specific recommendations concerning all other applications. Consult the Senergy website, www.senergy.basf.com, for additional information about products and systems and for updated literature.

RES 401E

SMaRT™ EIFS Procedure
Procedure for Installation of an Overlay Sealant Joint

Introduction
In instances where it is not possible to remove and replace existing sealant joints that need repair, a bridge joint can be applied on top of the existing joint.

Equipment
- Appropriate personal protective equipment
- Sealant cutting tool
- Coarse sandpaper and/or a hand-held grinder
- Air compressor
- Caulk gun
- Tooling knife or spatula

Materials
- Masking tape
- Bond breaker tape
- BASF MASTERSEAL NP-100 or NP-150 sealant
- BASF MASTERSEAL P173 or 179 Primer

Procedure
1. Cut the existing sealant down the middle of the joint through to the backer rod.
2. Remove at least 3/8” of textured finish on either side of the joint, exposing the base coat. Do not grind into reinforcing mesh.
3. Clean dust and debris from the surface that will receive sealant using a brush or oil-free compressed air.
4. Mask off textured finish outside of the area that will receive sealant. Build up the area adjacent to the places that will receive sealant to at least 1/4” thickness to allow the thickness of subsequently applied sealant to be gauged.
5. Apply bond breaker tape over the existing sealant joint.
6. Prime affected area with BASF MASTERSEAL P173 or P179 Primer. Allow the primer to dry. Primed joints must receive sealant on the same day that primer is applied.
7. Apply BASF MASTERSEAL NP100 or NP 150 sealant, extending sealant at least 3/8” onto basecoat on either side of the existing joint. Tool the sealant with a striking knife or spatula to smooth the surface. Sealant must be greater than 1/4” and no more than 3/8” thick. Use of liquid tooling agents are not recommended. Allow sealant to become tacky prior to removal of masking tape and materials used to gauge sealant thickness. Allow sealant to fully cure.

Technical Information
Consult the BASF Technical Services department for specific recommendations concerning all other applications. Consult the Senergy website, www.senergy.basf.com, for additional information about products and systems and for updated literature.
SMaRT™ EIFS Procedure
Procedure for Resurfacing EIFS

Introduction
There are many reasons to consider resurfacing damaged EIFS. Applying a resurfacing system allows creation of the best final appearance, can address multiple points of damage simultaneously, and allows installation of a strengthened EIFS lamina.

Where multiple points of damage are present, for example damage due to hailstorm impact, resurfacing may provide a more economical and better-looking repair. In addition, high-impact mesh can be used to strengthen areas subject to heavy service conditions, or to protect against future hailstorms.

By resurfacing EIFS, the cosmetic surface is fully restored. Changes in color and texture can be accomplished quickly and effectively. SENERFLEX TERSUS textured finishes can provide a hydrophobic surface that repels dirt and helps buildings remain cleaner and more visually appealing.

Senergy specialty finishes can be used to create EIFS with outstanding visual appeal, revitalizing the appearance of an existing building. Brick, stone, coral, metal and specialty stucco are some of the effects that can be created when resurfacing EIFS

Prior to resurfacing a building, consideration should be given to windows and other penetrations. Recaulking, reflash and/or replacement of inferior or damage windows should be done as part of a major resurfacing project.

Equipment
- Appropriate personal protective equipment
- Brushes, roller or spray equipment if BASF TINTED PRIMER is used
- Stainless steel trowel and margin trowel
- Plastic float
- Drill and paddle mixer

Materials
- BASF SURFACE STABILIZER WB
- BASF TINTED PRIMER, tinted to closely match the color of the selected finish
- Senergy Textured Finish
- Senergy ALPHA or ALPHA DRY Base Coat
- Senergy FLEXGUARD 4 Reinforcing Mesh
- Optional BASF HI-IMPACT 20 mesh
- Masking tape
- Clean pails

Procedure
1. Identify areas that will be resurfaced. For aesthetic reasons, resurfacing should be terminated at an architectural break in the wall such as a reveal, change in plane or change in elevation. Doing this minimizes the contrast between resurfaced areas and adjacent finishes.
2. Thoroughly clean all surfaces that will be resurfaced, and allow to dry.
3. Inspect all sealant joints and repair as needed.
4. Mask off areas that are not intended to be resurfaced and may come in contact with base coat or finish.
5. Apply BASF SURFACE STABILIZER WB to existing paint or acrylic finish that shows evidence of chalking.
6. Perform bond testing to confirm base coat adhesion.
7. Apply Senergy ALPHA or ALPHA DRY Base Coat using a stainless steel trowel to a uniform 1/16" thickness. Embed Senergy FLEXGUARD 4 Reinforcing Mesh directly into the wet base coat, troweling from the center outward. Overlap Senergy FLEXGUARD 4 Reinforcing Mesh at least 2.5-inches at mesh seams. Allow base coat to dry.
 If using BASF HI-IMPACT 20 mesh, apply Senergy ALPHA or ALPHA DRY Base Coat with a stainless steel trowel to a uniform 1/8" thickness. Embed Hi Impact 20 directly into wet base coat, troweling from the center outward. Overlap Senergy FLEXGUARD 4 Reinforcing Mesh at least 2.5-inches at mesh seams. Allow base coat to dry. Apply a second layer of Senergy ALPHA or ALPHA DRY Base Coat. Embed Senergy FLEXGUARD 4 Reinforcing Mesh directly into the second layer of wet base coat as described above. Allow base coat to dry.
8. BASF TINTED PRIMER can optionally be used to alleviate finish shadowing and reduce base coat suction. Apply using a brush, roller or spray equipment, achieving 750-1250 SF/pail coverage. Allow to dry for at least 24 hours. BASF TINTED PRIMER must be dry to the touch.
9. Apply Senergy Finish using a stainless steel trowel to a thickness slightly greater than the largest aggregate in the finish. Scrape finish to a uniform thickness, then float the finish.
10. Remove masking tape before the finish is dry. Touch up edges with a small paint brush. Allow finish to dry.
Introduction

Recladding an existing building is a major project that must address multiple objectives. Each project will have unique challenges. Selection of an appropriate exterior cladding system is an important part of a comprehensive building refurbishment.

One of the prime considerations when recladding a building is creation of a refreshed building appearance. Senergy offers a wide range of smooth and textured finishes and colors. Senergy restoration claddings can create the look of stone, metal, brick and stucco. SENERFLEX TERSUS textured finishes provide a hydrophobic surface that repels dirt and helps buildings remain cleaner and more visually appealing.

Selection and design of Senergy wall systems should be made within the context of building conditions and project objectives. Three options are available, based on the method of fastening the cladding to the existing structure.

Senergy CHANNELED ADHESIVE DESIGN EIFS is widely used because it provides optimized performance in a wide range of conditions. After cleaning the existing substrate, BASF SURFACE STABILIZER WB can be used to prepare glazed, aged and weathered surfaces for adhesive fastening. A pull test should be performed in all cases to verify adhesion.

Where a mechanically-fastened cladding is required, there are two Senergy options.

SENTURION systems are mechanically fastened EIFS. They are a suitable choice for low-rise buildings where high wind loads are not a design consideration.

Senergy ADHERED MAT DESIGN is an EIFS cladding that utilizes a non-metallic lath mechanically fastened to the substrate. Continuous exterior insulation is adhered to the lath. The combination of mechanical and adhesive fastening creates a wall system that can be applied to inconsistent substrates. ADHERED MAT DESIGN reliably provide the highest level of wind load performance.

A fluid-applied SENERSHIELD air/water-resistive barrier is a component or an option within each of these systems. Refrashing window rough openings is required to create a continuous air barrier, and to qualify for a drainage system warranty.

CHANNELED ADHESIVE DESIGN and ADHERED MAT DESIGN can provide up to R-45 continuous exterior insulation. SENTURION systems can provide up to R-15 continuous exterior insulation.

All Senergy systems offer light weight and a high allowable deflection, minimizing structural requirements applied to existing walls. For more information, please see the respective system brochures.

Technical Information

Consult the BASF Technical Services department for specific recommendations concerning all other applications. Consult the Senergy website, www.senergy.basf.com, for additional information about products and systems and for updated literature.