Senerflex® Secondary Barrier Design – Section 072413
Polymer-based EIFS incorporating an air/water resistive barrier

INTRODUCTION
This specification has been assembled to enable the design professional to select or delete sections to suit the project requirements and is intended to be used in conjunction with Senergy® typical details, product bulletins, technical bulletins, etc.

DESIGN RESPONSIBILITY
It is the responsibility of both the specifier and the purchaser to determine if a product is suitable for its intended use. The designer selected by the purchaser shall be responsible for all decisions pertaining to design, detail, structural capability, attachment details, shop drawings and the like. The Wall Systems business of BASF Corporation (herein referred to as “BASF Wall Systems”) has prepared guidelines in the form of specifications, typical application details, and product bulletins to facilitate the design process only. BASF Wall Systems is not liable for any errors or omissions in design, detail, structural capability, attachment details, shop drawings or the like, whether based upon the information provided by BASF Wall Systems or otherwise, or for any changes which the purchasers, specifiers, designers or their appointed representatives may make to BASF Wall Systems published comments.

DESIGNING AND DETAILING A SENERFLEX SECONDARY BARRIER DESIGN WALL SYSTEM
General: The system shall be installed in strict accordance with current recommended published details and product specifications from the system’s manufacturer.

A. Wind Load
1. Maximum deflection not to exceed L/240 under positive or negative design loads.
2. Design for wind load in conformance with local code requirements.

B. Substrate Systems
1. Acceptable substrates are: PermaBase® Cement Board and other cement-boards conforming with ASTM C1325 (Type A-exterior); poured concrete/unit masonry; ASTM C1177 type sheathings, including, Weather Defense™ Platinum sheathing, GreenGlass® sheathing, eXP™ sheathing, GlasRoc® sheathing, Securock™ glass-mat sheathing, and DensGlass® exterior sheathing; gypsum sheathing (ASTM C79/C1396); Exposure I or exterior plywood (Grade C/D or better); or Exposure I OSB.
2. Painted and otherwise coated surfaces of brick, unit masonry, stucco and concrete shall be inspected and prepared as approved by BASF Wall Systems before application. The applicator shall verify that the proposed substrate is acceptable prior to the SENERFLEX SECONDARY WEATHER BARRIER DESIGN Wall System installation.
3. The substrate systems shall be engineered with regard to structural performance by others.

C. Moisture Control
1. Prevent the accumulation of water behind the EIFS, either by condensation or leakage through the wall construction, in the design and detailing of the wall assembly.
 a. Provide flashing to direct water to the exterior where it is likely to penetrate components in the wall assembly, including, above window and door heads, beneath window and door sills, at roof/wall intersections, decks, abutments of lower walls with higher walls, above projecting features, and at the base of the wall and anywhere else required by local code.
 b. Air Leakage Prevention: provide continuity of air barrier system at foundation, roof, windows, doors and other penetrations through the system with connecting and compatible air barrier components to minimize condensation and leakage caused by air movement.
 c. Vapor Diffusion and Condensation: perform a dew point analysis of the wall assembly to determine the potential for accumulation of moisture in the wall assembly as a result of water vapor diffusion and condensation. Adjust insulation thickness and/or other wall assembly components accordingly to minimize the risk of condensation. Avoid the use of vapor retarders
on the interior side of the wall in warm, humid climates.

D. Impact Resistance
1. Provide Ultra-High impact resistance to a minimum height of 6’ – 0” (1.8m) above finished grade at all areas accessible to pedestrian traffic and other areas exposed to abnormal stress or potential impact. Indicate the areas with impact resistance requirements other than “Standard” on contract drawings.

E. Color Selection
1. The use of dark colors must be considered in relation to wall surface temperature as a function of local climate conditions. Select Finish Coat color with a light reflectance value (LRV) of 20% or higher. The use of dark colors (LRV less than 20%) is not recommended with EIF Systems that incorporate expanded polystyrene (EPS). EPS has a sustained service temperature limitation of approximately 71°C (160°F).

F. System Joints
1. Minimum ¾” (19 mm) expansion joints in the system are required at building expansion joints, at prefabricated panel joints, floor lines of wood frame construction, where substrates change and where structural movement is anticipated. It is the sole responsibility of the project design team, including the architect, engineer, etc., to ultimately determine specific expansion joint placement, width and design. Detail specific locations in construction drawings.
2. Minimum ½” (13 mm) wide sealant joints are required at all penetrations through the SENERFLEX SECONDARY WEATHER BARRIER DESIGN (windows, doors, etc.)
3. Specify compatible closed cell backer rod and acceptable sealant that has been evaluated in accordance with ASTM C 1382, “Test Method for Determining Tensile Adhesion Properties of Sealants When Used in Exterior Insulation and Finish System (EIFS) Joints,” and that meets minimum 50% elongation after conditioning.
4. The system must be properly terminated (back-wrapped a min. of 2”, properly sealed, flashed) at all penetrations, lighting fixtures, electrical outlets, hose bibs, dryer vents, etc.

G. Grade Condition
1. The SENERFLEX SECONDARY WEATHER BARRIER DESIGN is not intended for use below grade or on surfaces subject to continuous or intermittent immersion in water or hydrostatic pressure. Ensure a minimum 8” (203.2 mm) clearance above grade or as required by code, a minimum 1” (25.4 mm) clearance above finished grade (sidewalk/concrete flatwork).

H. Trim, Projecting Architectural Features
(Note to Specifier: Installation of the Senergy Wall System outside the slope guidelines referenced in this specification may still qualify for a standard warranty; however, low sloping EIFS conditions are subject to more extreme heat, increased maintenance and premature deterioration of the system shall be expected and any deleterious effects caused by the lack of slope will not be the responsibility of BASF Wall Systems. Senergy Wall Systems were designed and tested to be applied to vertical surfaces. The design professional has the option to build according to his/her project needs. The design professional must also consider geography, climate, building orientation, wall orientation and adjacent building components when designing with EIFS. The slope guidelines referenced below are provided to offer assistance to the owner and/or design professional. Final design of any building is the responsibility of the design professional.)
1. Minimum slope for all projections shall be 1:2 (27º) with a maximum length of 30.5 cm (12") [e.g. 15 cm in 30.5 cm (6" in 12")]. Increase slope for northern climates to prevent accumulation of ice/snow on the surface.

I. Coordination with other trades
1. Evaluate adjacent materials such as windows, doors, etc. for conformance to manufacturer’s details. Adjacent trades shall provide scaled shop drawings for review.
2. Air Seals at any joints/gaps between adjoining components (penetrations, etc.) are of primary importance to maintain continuity of an air barrier system and must be considered by the design professional in the overall wall assembly design. Install air seals between the primary Air/Water Resistive barrier and other wall components (penetrations, etc.) in order to maintain continuity of an air barrier system.
3. Provide site grading such that SENERFLEX SECONDARY WEATHER BARRIER DESIGN terminates a minimum of 8” (203 mm) above finished grade or as required by code.
4. Provide protection of rough openings in accordance with Senergy® Moisture Protection Guidelines for Senerflex Wall Systems before installing windows, doors, and other penetrations through the wall.

5. Install copings and sealant immediately after installation of the SENERFLEX SECONDARY WEATHER BARRIER DESIGN and when Senergy coatings are completely dry.

TECHNICAL INFORMATION
Consult BASF Wall Systems’ Technical Services Department for specific recommendations concerning all other applications. Consult the Senergy website, www.senergy.basf.com, for additional information about products and systems and for updated literature.
PART 1 GENERAL
NOTE TO SPECIFIER: Items in blue/underlined indicate a system option or choice of options. Throughout the specification, delete those which are not required or utilized.

1.01 SECTION INCLUDES
A. Refer to all drawings and other sections of this specification to determine the type and extent of work therein affecting the work of this section, whether or not such work is specifically mentioned herein.
C. Senergy products are listed in this specification to establish a standard of quality. Any substitutions to this specification shall be submitted to and receive approval from the Architect at least 10 days before bidding. Proof of equality shall be borne by the submitter.
D. The system type shall be Senergy SENERFLEX SECONDARY WEATHER BARRIER DESIGN as manufactured by BASF Corp. - Wall Systems, Jacksonville, Florida (herein referred to as BASF Wall Systems).

1.02 RELATED SECTIONS
A. Section 03 00 00 Concrete substrate
B. Section 04 00 00 Masonry substrate
C. Section 05 40 00 Cold-formed metal framing
D. Section 06 16 00 Sheathing
E. Section 06 11 00 Wood framing
F. Section 07 27 00 Air barriers
G. Section 07 62 00 Sheet Metal Flashing and Trim
H. Section 07 65 00 Flexible flashing
I. Section 07 90 00 Joint protection
J. Section 08 00 00 Openings
K. Section 09 22 00 Supports for plaster and gypsum board
L. Section 09 22 16 Non-structural metal framing
M. Section 09 29 00 Gypsum board

1.03 DEFINITIONS
B. Class PB Systems: A class of EIFS where the Base Coat varies in thickness depending upon the number of layers or thickness of Reinforcing Mesh. The reinforcing material is glass fiber mesh, which is embedded into the Base Coat at the time of installation. The Base Coat shall be applied so as to achieve Reinforcing Mesh embedment with no Reinforcing Mesh color visible, nominal thickness of 1.6 mm (1/16”). Protective Finish Coats, of various thicknesses, in a variety of textures and colors, are applied over the Base Coat.

1.04 SUBMITTALS
A. Submit under provisions of Section [01 33 00]
B. Product Data: Provide data on SENERFLEX SECONDARY WEATHER BARRIER DESIGN materials, product characteristics, performance criteria, limitations and durability.
C. Code Compliance: Provide manufacturer’s applicable code compliance report.
D. Samples: Submit [two] [x] [millimeter] [inch] size samples of SENERFLEX SECONDARY WEATHER BARRIER DESIGN illustrating Finish Coat color and texture range.
E. Certificate: System manufacturer’s approval of applicator.
F. Sealant: Sealant manufacturer’s certificate of compliance with ASTM C1382.
G. System manufacturer’s current specifications, typical details, system design guide and related product literature which indicate preparation required, storage, installation techniques, jointing requirements and finishing techniques.

1.05 QUALITY ASSURANCE
A. Manufacturer: More than 10 years in the EIFS industry, with more than 1000 completed EIFS projects.
B. Applicator: Approved by BASF Wall Systems in performing work of this section.
C. Regulatory Requirements: Conform to applicable code requirements for exterior insulation and finish system.
D. Field Samples
1. Provide under provisions of Section [01 43 36] [01 43 39].
2. Construct one field sample panel for each color and texture, [x] [meters] [feet] in size of system materials illustrating method of attachment, surface Finish color and texture.
3. Prepare each sample panel using the same tools and techniques to be used for the actual application.
4. Locate sample panel where directed.
5. Accepted sample panel [may] [may not] remain as part of the work.
6. Field samples shall be comprised of all wall assembly components including substrate, air/water-resistive barrier, insulation board, base coat, reinforcing mesh, primer (if specified), finish coat, and typical sealant/flashing conditions.

E. Testing:
1. General Air/Water-Resistive Barrier Minimum Performance:

<table>
<thead>
<tr>
<th>TEST</th>
<th>METHOD</th>
<th>CRITERIA</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Leakage of Air Barrier</td>
<td>ASTM E2357</td>
<td>0.2 l/(s.m2) @ 75 Pa (0.04 cfm/ft2 @ 1.57 psf)</td>
<td>0.0007 l/s.m2 (0.0001 cfm/ft2) @ 75 Pa (1.57 psf) positive / post conditioning</td>
</tr>
<tr>
<td>Assemblies</td>
<td></td>
<td></td>
<td>0.0014 l/s.m2 (0.0003 cfm/ft2) @ 75 Pa (1.57 psf) negative / post conditioning</td>
</tr>
<tr>
<td>Air Permeance of Building</td>
<td>ASTM E2178</td>
<td>0.02 l/(s.m2) @ 75 Pa (0.004 cfm/ft2 @ 1.57 psf)</td>
<td>0.0049 l/s.m2 @ 75 Pa (0.00098 cfm/ft2 @ 1.57 psf)</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate of Air Leakage</td>
<td>ASTM E283</td>
<td></td>
<td>0.0185 l/s.m2 @ 75 Pa (0.0037 cfm/ft2 @ 1.57 psf)</td>
</tr>
<tr>
<td>Water Vapor Transmission</td>
<td>ASTM E96</td>
<td>Report value</td>
<td>Senershield-R - 18 Perms (grains/Hr. in Hg. ft2) @ 10 mils wet film thickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Senershield-R - 14 Perms (grains/Hr. in Hg. ft2) @ 20 mils wet film thickness</td>
</tr>
<tr>
<td>Pull-Off Strength of Coatings</td>
<td>ASTM D4541</td>
<td>Min. 110 kPa (15.9 psi) or substrate failure</td>
<td>Pass - Tested over exterior gypsum sheathing, ASTM C1177 glass-mat sheathing, cement board, OSB, plywood; pvc and galvanized flashing</td>
</tr>
<tr>
<td>Nail Sealability (without</td>
<td>ASTM D1970</td>
<td>No water penetration at galvanized</td>
<td>Pass - Tested over exterior gypsum sheathing,</td>
</tr>
<tr>
<td>Sheathing Fabric)</td>
<td></td>
<td>roofing nail penetration under 127 mm (5")</td>
<td>ASTM C1177 glass-mat sheathing, cement board, OSB, plywood; pvc and galvanized flashing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>head of water after 3 days at 4° C (40° F)</td>
<td></td>
</tr>
<tr>
<td>Surface Burning</td>
<td>ASTM E84</td>
<td>Flame Spread < 25</td>
<td>Meets Class A: Flame spread =15 Smoke developed = 95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smoke Development < 450</td>
<td></td>
</tr>
</tbody>
</table>

2. Air/Water-Resistive Barrier ICC-ES AC-212:

<table>
<thead>
<tr>
<th>TEST</th>
<th>METHOD</th>
<th>CRITERIA</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential Testing:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Structural</td>
<td>ASTM E 1233</td>
<td>No cracking at joints or interface of</td>
<td>Pass - Tested over OSB and gypsum sheathing</td>
</tr>
<tr>
<td>2. Racking</td>
<td>Procedure A</td>
<td>flashing</td>
<td></td>
</tr>
<tr>
<td>3. ICC-ES AC-212</td>
<td>2. ASTM E 72</td>
<td>No water penetration after 15 min @ 137 Pa</td>
<td>No water penetration after 90 min @ 299 Pa</td>
</tr>
<tr>
<td>4. ASTM E 331</td>
<td>4. ASTM E 331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Water Penetration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequential Testing:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. ICC-ES AC-212</td>
<td>1. ICC-ES AC-212</td>
<td>No cracking or bond failure to substrate</td>
<td>Pass</td>
</tr>
<tr>
<td>2. ICC-ES AC-212</td>
<td>2. ICC-ES AC-212</td>
<td>No water penetration after 21.7 in (550 mm)</td>
<td></td>
</tr>
<tr>
<td>3. Hydrostatic Pressure Test</td>
<td>3. AATCC 127-1985</td>
<td>water for 5 hours</td>
<td></td>
</tr>
<tr>
<td>Freeze-Thaw</td>
<td>ASTM E 2485</td>
<td>No sign of deleterious effects after 10 cycles</td>
<td>Pass - Tested over exterior gypsum sheathing, ASTM C1177 glass-mat sheathing, cement board, OSB, plywood</td>
</tr>
<tr>
<td>(Method B)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Resistance</td>
<td>ASTM D2247</td>
<td>No deleterious effects after 14 day exposure</td>
<td>Pass - Tested over exterior gypsum sheathing, ASTM C1177 glass-mat sheathing, cement board, OSB, plywood</td>
</tr>
<tr>
<td>Tensile Bond</td>
<td>ASTM C 297</td>
<td>Minimum 103 kPa (15 psi)</td>
<td>Pass - Tested over exterior gypsum sheathing, ASTM C1177 glass-mat sheathing,</td>
</tr>
</tbody>
</table>
3. Air/Water-Resistance Barrier ICC-ES AC 148:

<table>
<thead>
<tr>
<th>TEST</th>
<th>METHOD</th>
<th>CRITERIA</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential Testing:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. UV Light Exposure</td>
<td>ICC-ES AC 148</td>
<td>No cracking or bond failure to substrate</td>
<td>Pass</td>
</tr>
<tr>
<td>2. Accelerated Aging</td>
<td>AATCC 127-1985</td>
<td>No water penetration after 21.7 in (550 mm) water for 5 hours</td>
<td></td>
</tr>
<tr>
<td>3. Hydrostatic Pressure Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peel Adhesion</td>
<td>ASTM D 3330 Method F</td>
<td>After UV Exposure After Accelerated Aging After Elevated Temperature Exposure After Water Immersion</td>
<td>Pass - tested over ASTM C1177 glass-mat sheathing, OSB, plywood, PVC and uncoated aluminum</td>
</tr>
<tr>
<td>Nail Sealability after Thermal Cycling</td>
<td>ASTM D 1970 (Modified), AAMA 711</td>
<td>No water penetration at galvanized roofing nail penetration under 31 mm (1.2") head of water after 24 hours at 4° C (40° F)</td>
<td>Pass</td>
</tr>
<tr>
<td>Tensile Strength after UV Exposure</td>
<td>ASTM D 5034, AAMA 711</td>
<td>Minimum 0.5 N/mm (2.9 lbs/in)</td>
<td>Pass</td>
</tr>
<tr>
<td>Cold Temperature Pliability</td>
<td>ASTM D 1970, AAMA 711</td>
<td>No cracking after bending around a 25 mm (1") mandrel after 2 hour exposure to -18° C (0° F)</td>
<td>Pass</td>
</tr>
<tr>
<td>Resistance to Peeling</td>
<td>AAMA 711</td>
<td>No signs of distress or failure after 24 hours of exposure at room temperature, 50° C (122° F), 65° C (149° F), 80° C (176° F)</td>
<td>Pass</td>
</tr>
</tbody>
</table>

4. SENERFLEX SECONDARY WEATHER BARRIER DESIGN System and Component Performance:

<table>
<thead>
<tr>
<th>TEST</th>
<th>METHOD</th>
<th>CRITERIA</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse Wind-load</td>
<td>ASTM E330</td>
<td>Steel stud framing (20 gauge) 16”o.c.</td>
<td>Average ultimate loads:</td>
</tr>
<tr>
<td>Transverse Wind-load</td>
<td>ASTM E330</td>
<td>Wood assembly (2’ x 4’) 16”o.c.</td>
<td>Average ultimate loads:</td>
</tr>
<tr>
<td>Water Penetration</td>
<td>ASTM E 331</td>
<td>No water penetration after 15 minutes @ 137 Pa (2.86 psf)</td>
<td>Pass</td>
</tr>
<tr>
<td>Radiant Heat Exposure</td>
<td>NFPA 268</td>
<td>No ignition at 20 minutes</td>
<td>Met test criteria with 12” thick EPS insulation.</td>
</tr>
<tr>
<td>Fire Endurance</td>
<td>ASTM E119</td>
<td>Maintain fire resistance of existing rated assembly</td>
<td>1 hour rating with maximum 4” thick EPS insulation.</td>
</tr>
<tr>
<td>Intermediate Scale Multi-story Fire Test</td>
<td>NFPA 285 / UBC Standard 26-9</td>
<td>1. Resist flame propagation over the exterior surface 2. Resist vertical spread of flame within combustible core/component of panel from one story to the next 3. Resist vertical spread of flame over the interior surface from one story to the next 4. Resist lateral spread of flame from the compartment of fire origin to adjacent spaces</td>
<td>Met test criteria with 12” thick EPS insulation.</td>
</tr>
<tr>
<td>Surface Burning</td>
<td>ASTM E84 / UL 723</td>
<td>Flame spread < 25 Smoke developed < 450</td>
<td>All components of the system meet Class A performance (FS < 25; SD < 450)</td>
</tr>
<tr>
<td>Abrasion Resistance</td>
<td>ASTM D968</td>
<td>No Cracking or loss of film integrity at 528 qt. (500L) of sand</td>
<td>Finish Coat not worn through after 686 liters of falling sand</td>
</tr>
<tr>
<td>Accelerated Weathering</td>
<td>ASTM G 153 (formerly G23)</td>
<td>No deleterious effects after 2000 hours</td>
<td>Pass</td>
</tr>
<tr>
<td>Accelerated Weathering</td>
<td>ASTM G 154 (formerly G53)</td>
<td>No deleterious effects after 2000 hours</td>
<td>Pass - No deleterious effects after 7500 hours.</td>
</tr>
<tr>
<td>Mildew Resistance</td>
<td>MIL Std 810B Method 508</td>
<td>No fungus growth after 28 days</td>
<td>Pass</td>
</tr>
<tr>
<td>Salt Fog Resistance</td>
<td>ASTM B117</td>
<td>No deleterious effects after 300 hours</td>
<td>Pass</td>
</tr>
<tr>
<td>Water Resistance of</td>
<td>ASTM D 2247</td>
<td>No deleterious effects after 14</td>
<td>Pass</td>
</tr>
</tbody>
</table>
5. Reinforcing Mesh Testing and Impact Resistance

<table>
<thead>
<tr>
<th>TEST</th>
<th>METHOD</th>
<th>CRITERIA</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkali Resistance of</td>
<td>ASTM E 2098</td>
<td>Greater than 120 psi (21 dN/CM) retained</td>
<td>Pass (all mesh)</td>
</tr>
<tr>
<td>Reinforcing Mesh</td>
<td></td>
<td>tensile strength</td>
<td></td>
</tr>
<tr>
<td>Date County Impact Test</td>
<td>Protocol 201</td>
<td>Large & Small Missile</td>
<td>Passed with various</td>
</tr>
<tr>
<td>FLEXGUARD 4</td>
<td>ASTM E2486 (formerly</td>
<td>25-49 inch-lbs. (2.8-5.8 j)</td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td>EIMA 101.86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERMEDIATE 6</td>
<td>ASTM E2486 (formerly</td>
<td>25-49 inch-lbs. (2.8-5.8 j)</td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td>EIMA 101.86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERMEDIATE 12</td>
<td>ASTM E2486 (formerly</td>
<td>50-89 inch-lbs. (5.7-10.1 j)</td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td>EIMA 101.86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERMEDIATE 12 &</td>
<td>ASTM E2486 (formerly</td>
<td>90-150 inch-lbs. (10.2-17.0 j)</td>
<td>Pass</td>
</tr>
<tr>
<td>FLEXGUARD 4</td>
<td>EIMA 101.86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRONG 15 & FLEXGUARD 4</td>
<td>ASTM E2486 (formerly</td>
<td>150 inch-lbs. (17 j)</td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td>EIMA 101.86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI-IMPACT 20 & FLEXGUARD 4</td>
<td>ASTM E2486 (formerly</td>
<td>150 inch-lbs. (17 j)</td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td>EIMA 101.86)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.06 DELIVERY, STORAGE AND HANDLING

A. Deliver, store and handle products under provisions of Section [01 65 00] [01 66 00] [].
B. Deliver SENERFLEX SECONDARY WEATHER BARRIER DESIGN materials in original unopened packages with manufacturer’s labels intact.
C. Protect SENERFLEX SECONDARY WEATHER BARRIER DESIGN materials during transportation and installation to avoid physical damage.
D. Store SENERFLEX SECONDARY WEATHER BARRIER DESIGN materials in cool, dry place protected from freezing. Store at no less than 4°C/40°F (10°C/50°F for AURORA STONE, AURORA TC-100 and ALUMINA Finish).
E. Store insulation boards flat and protected from direct sunlight and extreme heat.
F. Store SENERFLEX SECONDARY WEATHER BARRIER DESIGN Reinforcing Mesh, SHEATHING FABRIC and WS FLASH/WS WRAP flexible flashing in cool, dry place protected from exposure to moisture.

1.07 PROJECT/SITE CONDITIONS

A. Do not apply SENERFLEX SECONDARY WEATHER BARRIER DESIGN in ambient temperatures below 4°C/40°F (10°C/50°F for AURORA STONE, AURORA TC-100 and ALUMINA Finish). Provide properly vented, supplementary heat during installation and drying period when temperatures less than 4°C/40°F (10°C/50°F for AURORA STONE, AURORA TC-100 and ALUMINA Finish) prevail.
B. Do not apply SENERFLEX SECONDARY WEATHER BARRIER DESIGN materials to frozen surfaces.
C. Maintain ambient temperature at or above 4°C/40°F (10°C/50°F for AURORA STONE, AURORA TC-100 and ALUMINA Finish) during and at least 24 hours after SENERFLEX SECONDARY WEATHER BARRIER DESIGN installation and until dry.

1.08 SEQUENCING AND SCHEDULING

A. Coordinate and schedule installation of SENERFLEX SECONDARY WEATHER BARRIER DESIGN with related work of other sections.
B. Coordinate and schedule installation of trim, flashing, and joint sealers to prevent water infiltration behind the system.

1.09 WARRANTY

A. Provide BASF Wall Systems ten-year limited labor, materials and drainage warranty for SENERFLEX SECONDARY WEATHER BARRIER DESIGN installations under provisions of Section [01 70 00]. Reference Senergy’s EIFS and Coating Warranty Schedule technical bulletin for specific information.
B. Comply with BASF Wall Systems project review requirements and notification procedures to assure qualification for warranty.

PART 2 PRODUCTS
2.01 MANUFACTURERS
A. SENERFLEX SECONDARY WEATHER BARRIER DESIGN (Class PB System) manufactured by BASF Wall Systems.

2.02 MATERIALS
NOTE TO SPECIFIER: Items in blue/underlined indicate a system option or choice of options. Throughout the specification, delete those which are not required or utilized. Contact BASF Wall Systems Technical Service Department for further assistance.
A. Air/Water-Resistive Barrier Components:
1. Air/Water-Resistive Barrier: (Required, Select a or b)
 a. SENERSHIELD-R: a one-component fluid-applied vapor permeable air/water-resistive barrier.
 b. SENERSHIELD-VB: a one-component fluid-applied vapor impermeable air/water-resistive barrier.
2. SHEATHING FABRIC: spun-bonded non-woven reinforced polyester web for use with Senergy liquid air/weather resistive barriers.
3. WS FLASH/FLASHING PRIMER:
 b. FLASHING PRIMER: water-based primer for use prior to application of WS FLASH on all acceptable surfaces.
B. Adhesives/Base Coats: (Required, Select One or More)
1. ALPHA Base Coat: a 100% acrylic base coat, field-mixed with Type I or Type II Portland cement. It has a creamy texture that is easily spread.
2. ALPHA DRY Base Coat: a dry-mix polymer adhesive and base coat containing Portland cement, and requiring only water for mixing.
3. XTRA-STOP Base Coat: a 100% acrylic-based, water-resistant base coat, field-mixed with Type I or Type II Portland cement.
4. ALPHA GENIE Base Coat: a 100% acrylic, fiber-reinforced base coat, adhesive and leveler that is field-mixed with Type I or Type II Portland cement.
NOTE TO SPECIFIER: Portland cement is not required if ALPHA DRY Base Coat is specified.
C. Portland cement:
1. Conform to ASTM C150, Type I, II, or I/II, grey or white; fresh and free of lumps.
D. Water:
1. Clean and potable without foreign matter.
E. Insulation Board: (Required, Select One)
1. Expanded polystyrene; ASTM C578, Type I; Flame spread less than 25, smoke developed less than 450 per ASTM E84, UL 723.
 a. Minimum density 15.22 kg/m³ (0.95 lb./ft³); K=6.09 per mm (0.24 per inch).
 b. Minimum thickness as indicated on drawings [minimum 19 mm (3/4")].
 c. Air-dried (aged) six weeks, or equivalent, prior to installation.
 d. Edges: square within 0.8 mm per meter (1/32" per foot).
 e. Thickness: tolerance of plus or minus 1.6 mm (1/16").
 f. Size: 0.6 m x 1.22 m (2' x 4').
 g. Length and width: tolerance of plus or minus 1.6 mm (1/16").
2. NEOPOR Rigid Insulation Board; ASTM C578, Type I; Flame spread less than 25, smoke developed less than 450 per ASTM E84, UL 723.
 a. Minimum density 15.22 kg/m³ (0.95 lb./ft³); K=6.09 per mm (0.24 per inch).
 b. Minimum thickness as indicated on drawings [minimum 19 mm (3/4")].
 c. Air-dried (aged) six weeks, or equivalent, prior to installation.
 d. Edges: square within 0.8 mm per meter (1/32" per foot).
 e. Thickness: tolerance of plus or minus 1.6 mm (1/16").
 f. Size: 0.6 m x 1.22 m (2' x 4').
g. Length and width: tolerance of plus or minus 1.6 mm (1/16").

F. Senergy Reinforcing Mesh: balanced, open-weave glass, fiber reinforcing mesh, twisted multi-end strands treated for compatibility with Senergy Base Coats. *(Required, Select One or More)*
1. FLEXGUARD 4: standard weight, 4 oz.
2. INTERMEDIATE 6: standard/medium weight, 6 oz.
3. INTERMEDIATE 12: intermediate weight, 12 oz.
4. STRONG 15: heavy weight, 15 oz. used only in combination with Flexguard 4 or Intermediate 6.
5. HI-IMPACT 20: heavy weight, 20 oz. used only in combination with Flexguard 4 or Intermediate 6.
6. CORNER MESH: Intermediate weight, pre-marked for easy bending, for reinforcing at exterior corners.

G. BASF Coating: *(Optional)*
1. BASF COLOR COAT: a 100% acrylic-based coating. It is designed for spray-, roller- or brush-application over EIFS with minimum change in finish texture or sheen.

H. BASF Primer: *(Optional)*
1. BASF TINTED PRIMER: a 100% acrylic-based primer that helps alleviate shadowing and enhances performance of the Senergy Wall Systems. Color to closely match the selected Senergy Finish Coat color.

I. Senergy Finish Coat: *(Required, Select One or More Finishes and Textures)*
1. SENERFLEX Finish: 100% acrylic polymer finishes with advanced technology to improve long-term performance and dirt pick-up resistance; air cured, compatible with base coat; Senergy finish color [] as selected; finish texture:
 a. CLASSIC: has a medium "worm-holed" appearance which is achieved by the random aggregate sizes in the Finish. The "worm-holed" look can be circular, random, vertical or horizontal.
 b. FINE: utilizes uniformly-sized aggregates for a uniform, fine texture.
 c. TEXTURE: can achieve a wide variety of free-formed, textured appearances, including stipple and skip-trowel
 d. SAHARA: provides a uniform, "pebble" appearance.
 e. BELGIAN LACE: a fine "worm-holed" appearance which is achieved by the random aggregate sizes in the Finish. The small "worm-holed" look can be circular, random, vertical or horizontal.
2. SENERFLEX TERSUS Finish: modified acrylic based finish with water repellent properties, compatible with base coat; Senergy finish color [] as selected; finish texture:
 a. F1.0: a 1.0 mm uniform aggregate creating a fine texture.
 b. M1.0: a 1.5 mm uniform aggregate creating a medium sand texture.
3. Specialty Finishes: 100% acrylic polymer finishes that can be hand-troweled to simulate stone or create a time-honored, mottled tone-on-tone look that achieves a soft and weathered patina over time
 a. ENCAUSTO VERONA: utilizes uniformly-sized aggregate to achieve a free-formed, flat texture. It can be used to achieve a mottled look and unlimited tone on tone designs by combining multiple colors.
 b. METALLIC: has a pearlescent appearance. It utilizes uniformly-sized aggregates for a uniform fine texture.
 c. AURORA TC-100: provides a stone-like appearance, either rough or smooth depending upon application.
 d. AURORA STONE: provides a rough, stone-like appearance.
 e. ALUMINA: is a factory-mixed, reflective stone finish consisting of colored aggregate and large black mica flakes in a 100% acrylic transparent binder that provides a classic granite or marble-like textured finished appearance.
4. CHROMA Finish: 100% acrylic polymer based finish with integrated high performance colorants for superior fade resistance, compatible with base coat; Senergy finish color [] as selected; finish texture:
 a. F1.0: utilizes uniformly-sized aggregates for a uniformly fine texture.
 b. M1.5: provides a uniform "pebble" appearance.
 c. R1.5: has a medium "worm-holed" appearance which is achieved by the random aggregate sizes in the Finish. The "worm-holed" look can be circular, random, vertical or horizontal

J. BASF Wall System’s Glaze/Stain: *(Optional)*
1. ANTICOGLAZE: 100% acrylic antiquing stain product used to impart an ‘old world’ mottled look to
textured finishes.

2.03 ACCESSORIES
A. Window/Door Drip Edge: Rigid polyvinyl chloride (PVC), UV resistant for exterior use, with a drip edge, as furnished by Plastic Components, Inc. or equal. Accessories shall conform to ASTM D1784-97, C1063-99 and D4216-99.

PART 3 EXECUTION
3.01 EXAMINATION
A. Site Conditions:
1. Verify project site conditions under provisions of Section [01 00 00].
B. Walls:
1. Substrates:
 a. Roller applied air/water-resistive barrier acceptable substrates: Acceptable substrates are: PermaBase® Cement Board and other cement-boards conforming with ASTM C1325 (Type A-exterior); poured concrete/unit masonry; ASTM C1177 type sheathings, including, Weather Defense™ Platinum sheathing, GreenGlass® sheathing, eXP™ sheathing, GlasRoc® sheathing, Securock™ glass-mat sheathing, and DensGlass® exterior sheathing; gypsum sheathing (ASTM C79/C1396); Exposure I or exterior plywood (Grade C/D or better); or Exposure I OSB. Consult the BASF Wall Systems Technical Services Department for all other applications.
 b. Wall sheathing must be securely fastened per applicable building code and sheathing manufacturer’s requirements.
 c. Examine surfaces to receive SENERFLEX CHANNELED ADHESIVE DESIGN and verify that substrate and adjacent materials are dry, clean, sound, and free of releasing agents, paint, or other residue or coatings. Verify substrate is flat, free of fins or planar irregularities greater than 6.4 mm in 3 m (1/4” in 10').
2. Flashings:
 a. All flashings are by others and must be installed in accordance with specific manufacturer’s requirements. Where appropriate, end-dams must be provided.
 b. Openings must be flashed prior to window/door, HVAC, etc. installation. Refer to WS Flash product bulletin and Senergy® Moisture Protection Guidelines for Senerflex Wall Systems bulletin for further information.
 c. Windows and openings shall be flashed according to design and Building Code Requirements.
 d. Individual windows that are ganged to make multiple units require continuous head flashing and the joints between the units must be fully sealed.
3. Roof:
 a. Verify that all roof flashings have been installed in accordance with the guidelines set by the Asphalt Roofing Manufacturers Association (ARMA).
4. Kick-out flashing:
 a. Kick-out flashing must be installed leak-proof and angled (min 100°) to allow for proper drainage and water diversion.
C. Do not proceed until all unsatisfactory conditions have been corrected.

3.02 PREPARATION
A. Protect all surrounding areas and surfaces from damage and staining during application of Senerflex® Secondary Barrier Design.
B. Finish: protect finished work at end of each day to prevent water penetration.
C. Substrate preparation: prepare substrates in accordance with Senergy instructions.

3.03 MIXING
General: No additives are permitted unless specified in product mixing instructions. Close containers when not in use. Prepare in a container that is clean and free of foreign substances. Do not use a container which has contained or been cleaned with a petroleum-based product. Clean tools and equipment with water immediately after use. Dried material can only be removed mechanically.
NOTE TO SPECIFIER: Keep only the products in this section which were selected in Section 2.02. Delete those not to be utilized.
A. Air/Water-Resistive Barriers:
 1. SENERSHIELD-R: Mix with a clean, rust-free paddle and drill until thoroughly blended. Do not add water.
 2. SENERSHIELD-VB: Mix with a clean, rust-free paddle and drill until thoroughly blended. Do not add water.

B. Senergy Base Coat:
 1. ALPHA Base Coat: mix base coat with a clean, rust-free paddle and drill until thoroughly blended, before adding Portland cement. Mix one part (by weight) Portland cement with one part base coat. Add Portland cement in small increments, mixing until thoroughly blended after each additional increment. Clean, potable water may be added to adjust workability.
 2. XTRA-STOP Base Coat: mix base coat with a clean, rust-free paddle and drill until thoroughly blended, before adding Portland cement. Mix one part (by weight) Portland cement with one part base coat. Add Portland cement in small increments, mixing until thoroughly blended after each additional increment. Clean, potable water may be added to adjust workability.
 3. ALPHA GENIE Base Coat: mix base coat with a clean, rust-free paddle and drill until thoroughly blended, before adding Portland cement. Mix one part (by weight) Portland cement with one part base coat. Add Portland cement in small increments, mixing until thoroughly blended after each additional increment. Clean, potable water may be added to adjust workability.
 4. ALPHA DRY Base Coat: mix and prepare each bag in a 19-liter (5-gallon) pail. Fill the container with approximately 5.6-liters (1.5-gallons) of clean, potable water. Add ALPHA DRY Base Coat in small increments, mixing after each additional increment. Mix ALPHA DRY Base Coat and water with a clean, rust-free paddle and drill until thoroughly blended. Additional ALPHA DRY Base Coat or water may be added to adjust workability.

C. BASF Coating:
 1. BASF COLOR COAT: Mix the factory-prepared material with a clean, rust-free paddle and drill until thoroughly blended. A small amount of clean, potable water may be added to adjust workability. Do not overwater.

D. BASF Primer:
 1. BASF TINTED PRIMER: Mix the factory-prepared material with a clean, rust-free paddle and drill until thoroughly blended. A small amount of clean, potable water may be added to adjust workability. Do not overwater.

E. Senergy Finishes:
 1. SENERFLEX, SENERFLEX TERSUS, CHROMA, and ENCAUSTO VERONA Finish: Mix the factory-prepared material with a clean, rust-free paddle and drill until thoroughly blended. A small amount of clean, potable water may be added to adjust workability. Do not overwater.

F. Specialty Finishes:
 1. AURORA TC-100, AURORA STONE, and ALUMINA Finish: Gently mix the contents of the pail for 1 minute using a low RPM 1/2 inch drill equipped with a mixing paddle such as a Demand Twister or a Windlock B-MEW, B-M1 or B-M9.

G. BASF Wall System's Glaze/Stain:
 1. ANTICOGLAZE: mix the contents of the pail with a slow speed drill and paddle mixer until thoroughly blended.

3.04 APPLICATION
A. Accessories:
 1. Attach Window/Door Drip Edge level and per manufacturer's instructions.

B. Air/Water-Resistive Barrier:
 1. All sheathing joints and windows/openings must be protected and the air/water-resistive barrier applied in accordance with Senergy Moisture Protection Guidelines technical bulletin.
 2. Substrate shall be dry, clean, sound, and free of releasing agents, paint, or other residue or coatings. Verify substrate is flat, free of fins or planar irregularities greater than 6.4 mm in 3 m (¼" in 10').
 3. Unsatisfactory conditions shall be corrected before application of the Senergy air/water-resistive barriers.
 4. Apply the SHEATHING FABRIC and Senergy air/water-resistive barrier in accordance with the Senergy air/water-resistive barrier product bulletin.
5. Installed materials shall be checked before continuing system application.
6. Ensure SHEATHING FABRIC and Senergy air/water-resistive barrier overlaps the top flange of the starter track.

C. Insulation Board:
1. Vertical surfaces: begin at base of wall with firm, temporary support or spacer.
2. Stagger joints horizontally in a running bond pattern offset a minimum of 6”.
3. Pre-cut insulation board to fit openings and projections. Insulation board must be a single piece around corners of openings. Stagger vertical joints and corners. Stagger insulation and sheathing board joints. Offset insulation board joints from sheathing joints by a minimum of 16”.
4. Apply mixed Senergy Base Coat to entire surface of insulation board using a stainless steel trowel with 13 mm x 13 mm (1/2” x 1/2”) notches spaced 50 mm (2”) apart. Ribbons of adhesive must be applied parallel to the 2’ dimension of the EPS insulation board to ensure they are vertical when the EPS insulation board is applied to the substrate.
5. Immediately set board into place and apply pressure over entire surface of board to ensure positive uniform contact and high initial grab. Do not slide board into place. Do not allow base coat to dry prior to installing.
6. Abut all joints tightly and ensure overall flush level surface.
7. Fill 1/16” and larger gaps between insulation boards with slivers of insulation board.
8. Check adhesion periodically by removing a board prior to set. Properly installed insulation board will be difficult to remove and Senergy adhesive/base coat will be adhered to both the Senergy air/water-resistive barrier and the insulation board.
9. Allow application of insulation board to dry (normally 8 to 10 hours) prior to application of base coat/reinforcing mesh.
10. Rasp flush any irregularities of the insulation board greater than 1.6 mm (1/16”).
11. Install expansion joints and aesthetic grooves as indicated on drawings. Do not align aesthetic grooves with insulation board joints.

D. Senergy Base Coat/Reinforcing Mesh:
1. Base coat shall be applied so as to achieve reinforcing mesh embedment with no reinforcing mesh color visible.

NOTE TO SPECIFIER: Indicate on drawings the required locations of standard, medium, high or ultra-high impact reinforcing mesh.

E. Senergy CORNER MESH:
1. Install CORNER MESH at corners.
2. Apply CORNER MESH prior to application of reinforcing mesh.
3. Cut CORNER MESH to workable lengths.
4. Apply mixed Senergy Base Coat to insulation board at outside corners using a stainless steel trowel.
5. Immediately place CORNER MESH against the wet base coat and embed the CORNER MESH into the Base Coat by troweling from the corner; butt edges and avoid wrinkles.
6. After base coat is dry and hard, apply a layer of FLEXGUARD 4, INTERMEDIATE 6 or 12 Reinforcing Mesh over the entire surface of the CORNER MESH in accordance with 3.04 F.

F. Standard Impact or Medium Impact Resistance Reinforcing Mesh: FLEXGUARD 4 INTERMEDIATE 6 and INTERMEDIATE 12
1. Install Senergy Reinforcing Mesh where indicated on drawings.
2. Apply mixed Senergy Base Coat to entire surface of insulation board with a stainless steel trowel to embed the Reinforcing Mesh.
3. Immediately place Senergy Reinforcing Mesh against wet base coat and embed the reinforcing mesh into the base coat by troweling from the center to the edges.
4. Lap reinforcing mesh 64 mm (2 ½”) minimum at edges.
5. Ensure reinforcing mesh is continuous at corners, void of wrinkles and embedded in base coat so that no reinforcing mesh color is visible.
6. If required, apply a second layer of base coat to achieve total nominal base coat/reinforcing mesh thickness of 1.6 mm (1/16”).
7. Allow base coat with embedded reinforcing mesh to dry hard (normally 8 to 10 hours).

G. High Impact or Ultra High Impact Resistance Reinforcing Mesh: INTERMEDIATE 12, STRONG 15 and HI-IMPACT 20
NOTE TO SPECIFIER: Where STRONG 15 or HIGH-IMPACT 20 is specified, FLEXGUARD 4 or INTERMEDIATE 6 must be specified also.

1. Install Senergy Reinforcing Mesh where indicated on drawings.
2. Apply mixed Senergy Base Coat to entire surface of insulation board with a stainless steel trowel to embed the reinforcing mesh.
3. Immediately place Senergy Reinforcing Mesh against wet base coat and embed the Reinforcing Mesh into the base coat by troweling from the center to the edges.
4. Butt Senergy Reinforcing Mesh at all adjoining edges; do not use to backwrap or bend around corners.
5. Butt Senergy Reinforcing Mesh at adjoining edges of CORNER MESH.
6. Ensure reinforcing mesh is free of wrinkles and embedded in base coat so that no reinforcing mesh color is visible.
7. After base coat with embedded reinforcing mesh is dry and hard (normally 8 to 10 hours), apply a layer of FLEXGUARD 4 or INTERMEDIATE 6 Reinforcing Mesh over the entire surface in accordance with 3.04 F to achieve total nominal base coat/reinforcing mesh thickness of 2.4 mm (3/32").

H. BASF COLOR COAT:
1. Apply material to the base coat/reinforcing mesh in sealant joints with a high-quality, latex-type paintbrush.
2. Work material continuously until a uniform appearance is obtained.
3. Allow to dry thoroughly (approximately 24 hours) prior to application of sealant primer and sealant.

I. BASF TINTED PRIMER:
1. Apply BASF TINTED PRIMER to the base coat/reinforcing mesh with a sprayer, 10 mm (⅜") nap roller, or good quality latex paint brush at a rate of approximately 3.6–6.1m² per liter (150–250 ft² per gallon).
2. BASF TINTED PRIMER shall be dry to the touch before proceeding to the Senergy finish coat application.

J. Senergy Finish Coat: SENERFLEX, SENERFLEX TERSUS and CHROMA.
1. Apply Senergy finish directly to the base coat with a clean, stainless steel trowel.
2. Apply and level Senergy finish during the same operation to minimum obtainable thickness consistent with uniform coverage.
3. Maintain a wet edge on Senergy finish by applying and texturing continually over the wall surface.
4. Work Senergy finish to corners, joints or other natural breaks and do not allow material to set up within an uninterrupted wall area.
5. Float Senergy finish to achieve final texture.

K. Specialty Finish:
1. AURORA TC-100 Finish:
 a. Apply BASF TINTED PRIMER to substrate in accordance with current BASF TINTED PRIMER product bulletin.
 b. BASF TINTED PRIMER shall be of corresponding color for selected AURORA TC-100 finish color. Allow BASF TINTED PRIMER to dry to the touch before proceeding to AURORA TC-100 finish application.
 c. Apply a tight coat of finish with a clean, stainless steel trowel.
 d. Maintain a wet edge on finish by applying and leveling continually over the wall surface.
 e. Work finish to corners, joints or other natural breaks and do not allow material to set up within an uninterrupted wall area. Allow first coat to set until surface is completely dry prior to applying a second coat of finish.
 f. For a smooth appearance, use a stainless steel trowel and apply the second coat of finish. Achieve final texture using circular motions.
 g. For a textured appearance, apply the second coat of finish using a spray gun and hopper. Double-back to achieve final texture.
 h. Total thickness of finish shall be approximately 1.6 mm (1/16").
2. AURORA STONE Finish:
 a. Apply BASF TINTED PRIMER to substrate in accordance with current BASF TINTED PRIMER product bulletin.
 b. BASF TINTED PRIMER shall be of corresponding color for selected AURORA STONE finish
color. Allow BASF TINTED PRIMER to dry to the touch before proceeding to AURORA STONE finish application.
c. Apply a coat of AURORA STONE finish using a spray gun and hopper, maintaining a wet edge. Work to corners, joints or other natural breaks and do not allow material to set up within an uninterrupted wall area.
d. Allow first coat of AURORA STONE finish to set until surface is completely dry prior to applying a second coat of AURORA STONE finish.
e. Apply a second coat of AURORA STONE finish using a spray gun and hopper; double back to achieve final texture.
f. Thickness of AURORA STONE finish may vary between 1.6 mm (1/16”) and 3.2 mm (1/8”), depending upon texture.

Note: Spraying of AURORA STONE FINISH shall be in the same manner and direction and by the same mechanic on a particular elevation or project whenever possible, to maintain a uniform appearance. Maintain consistent air pressure to minimize texture variations. Stator or rotor design pumps are not recommended.

3. ALUMINA Finish:
a. Apply BASF TINTED PRIMER to substrate in accordance with current BASF TINTED PRIMER product bulletin.
b. BASF TINTED PRIMER shall be of corresponding color for selected ALUMINA finish color. Allow BASF TINTED PRIMER to dry to the touch before proceeding to ALUMINA finish application.
c. Apply a tight coat of finish with a clean, stainless steel trowel.
d. Maintain a wet edge on finish by applying and leveling continually over the wall surface.
e. Work finish to corners, joints or other natural breaks and do not allow material to set up within an uninterrupted wall area. Allow first coat to set until surface is completely dry prior to applying a second coat of finish.
f. Use a stainless steel trowel and apply the second coat of finish. Achieve final texture using circular motions.
g. Total thickness of finish may be between 1.6 mm (1/16”) and 3.2 mm (1/8”).

L. BASF Wall System’s Glaze/Stain:

1. BASF ANTI-COGLAZE:
a. Apply BASF ANTI-COGLAZE in accordance with recommendations contained in current product literature.

3.05 CLEANING
A. Clean work under provisions of Section [01 74 00] [].
B. Clean adjacent surfaces and remove excess material, droppings, and debris.

3.06 PROTECTION
A. Protect base coat from rain, snow and frost for 48–72 hours following application.
B. Protect installed construction under provisions of Section [01 76 00] [].

END OF SECTION